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Summary. Fuzzy Rule Induction (FRI) is one of the main areas of research in the
field of computational intelligence. Recently FRI has been successfully employed
in the field of data mining in bioinformatics [34, 38]. Thanks to its flexibility and
potentialities FRI allowed researchers to extract rules that can be easily modeled
in natural language and submitted to experts in the field that can validate their
accuracy or consistency. The process of FRI can result to be highly complex from
a computational complexity point of view and, for this reason, several alternative
approaches to accomplish this process have been proposed ranging from iterative and
simultaneous algorithms [22] to Genetic Algorithms and Ant Colony Optimization
based approaches [22]. In this chapter we will focus on a specific application of type-1
(T1) and type-2(T2) fuzzy systems to data mining in bioinformatics in which FRI is
carried out using a novel and promising computational paradigm, namely Artificial
Immune Systems (AIS). In order to provide the reader with the necessary theoretical
background we will go through a brief introduction to the fields of AIS and T2 Fuzzy
Systems, then we will set up the scientific context and describe applications of these
concepts to real world cases. Conclusions and cues for future work in this fascinating
field will be provided in the end.

1.1 Artificial Immune Systems

Artificial Immune Systems (AIS) represent one of the most recent and promis-
ing approaches in the branch of bio-inspired techniques. Although this open
field of research is still in its infancy, several relevant results have been achieved
by using the AIS paradigm in demanding tasks such as the those coming from
computational biology and biochemistry. Artificial immune systems (AIS) can
be defined as computational systems inspired by theoretical immunology, ob-
served immune functions, principles and mechanisms in order to solve prob-
lems. Their development and application domains follow those of soft com-
puting paradigms such as artificial neural networks (ANN), evolutionary algo-
rithms (EA) and fuzzy systems (FS). Soft computing was the term coined to
address a new trend of co-existence and integration that reflects a high degree
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of interaction among several computational intelligence approaches like arti-
ficial neural network, evolutionary algorithms and fuzzy systems. The idea of
integrating different computational intelligence paradigms in order to create
hybrids combining the strengths of different approaches is not new. Following
the previous concepts when in 2002 de Castro and Timmis introduced AIS as
a new soft computing paradigm they gave birth to a new challenge to have a
great potential to interact the new born technique with others. Strictly speak-
ing evolution and immune system are biologically closely related to each other.
In fact the process of natural selection can be seen to act the immune system
at two levels. First recall that lymphocytes multiply based on their affinity
with a pathogen. The higher affinity lymphocytes are selected to reproduce,
a process usually named immune microevolution. The mechanism of immune
microevolution is very important. The clonal selection principle presupposes
that a very large number of B-cells containing antigenic receptors is constantly
circulating throughout the organism. The great diversity of this repertoire is
a result of the random genetic recombination of gene fragments from different
libraries plus the random insertion of gene sequences during cell development.
This availability of different solutions guarantees that at least one cell will
produce an antibody capable of recognizing, thus binding with, any antigen
that invades the organism. The antigen-antibody binding stimulates the pro-
duction of clones of the selected cells, where successive generations result in
exponential growth of the selected antibody type. Some of these antibodies re-
main in circulation even after the immune response ceases, constituting a sort
of immune memory. Other cells differentiate in plasma cells, producing anti-
bodies in high rates. Finally during reproduction, some clones suffer an affinity
maturation process, where somatic mutations are inserted with high rates (hy-
permutation) and, combined with a strong selective mechanism, improve the
capability (Ag-Ab affinity and clone size) of these antibodies to recognize and
respond to the selective antigens. Secondly, there is surely an immune contri-
bution to natural selection, which acts by allowing the multiplication of those
people carrying genes that are most able to provide maximal defense against
infectious diseases coupled with minimal risk of autoimmune diseases. At this
time the majority of the immune algorithms currently developed have an evo-
lutionary type of learning of embodied process and several techniques from
one strategy have been used to enhance another. I-PAES presented and

discussed in the Section ?? is an example of hybridization between

a particular class of evolutionary algorithms called multi-objective

and immune inspired operators namely cloning and hypermutaion.

The success of the AIS paradigm is based on two key properties of its
theoretical foundations: recognition and adaptation/optimization. When an
animal is exposed to an antigen, some subpopulation of its bone marrow de-
rived cells (B lymphocytes) respond by producing antibodies (Ab). Each cell
secretes a single type of antibody, which is relatively specific for the antigen.
By binding to these antibodies (cell receptors), and with a second signal from
accessory cells, such as the T-helper cell, the antigen stimulates the B cell to
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proliferate (divide) and mature into terminal (non-dividing) antibody secret-
ing cells, called plasma cells. The process of cell division (mitosis) generates
a clone, i.e., a cell or set of cells that are the progenies of a single cell. While
plasma cells are the most active antibody secretors, large B lymphocytes,
which divide rapidly, also secrete antibodies, albeit at a lower rate. On the
other hand, T cells play a central role in the regulation of the B cell response
and are preeminent in cell mediated immune responses, but will not be explic-
itly accounted for the development of our model. Lymphocytes, in addition
to proliferating and/or differentiating into plasma cells, can differentiate into
long-lived B memory cells. Memory cells circulate through the blood, lymph
and tissues, and when exposed to a second antigenic stimulus commence to
differentiate into large lymphocytes capable of producing high affinity anti-
bodies, pre-selected for the specific antigen that had stimulated the primary
response. Fig 1.1 depicts the clonal selection principle.

Fig. 1.1. Clonal selection principle in natural immune systems.

The clonal selection and affinity maturation principles are used to explain
how the immune system reacts to pathogens and how it improves its capa-
bility of recognizing and eliminating pathogens [14]. In a simple form, clonal
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selection states that when a pathogen invades the organism, a number of
immune cells that recognize these pathogens will proliferate; some of them
will become effector cells, while others will be maintained as memory cells.
The effector cells secrete antibodies in large numbers, and the memory cells
have long life spans so as to act faster and more effectively in future expo-
sures to the same or a similar pathogen. During the cellular reproduction, the
cells suffer somatic mutations with high rates and, together with a selective
force, the higher affinity cells in relation to the invading pathogen differentiate
into memory cells. This whole process of somatic mutation plus selection is
known as affinity maturation. To a reader familiar with evolutionary biology,
these two processes of clonal selection and affinity maturation are much akin
to the (macro-)evolution of species. There are a few basic differences how-
ever, between these immune processes and the evolution of species. Within
the immune system, somatic cells reproduce in an asexual form (there is no
crossover of genetic material during cell mitosis), the mutation suffered by
an immune cell is proportional to its affinity with the selective pathogen (the
higher the affinity, the smaller the mutation rate), and the number of proge-
nies of each cell is also proportional to its affinity with the selective pathogen
(the higher the affinity, the higher the number of progenies). Evolution in
the immune system occurs within the organism and, thus it can be viewed
as a micro-evolutionary process. As we know, in fact, immunology suggests
that the natural Immune System (IS) has to assure recognition of each po-
tentially dangerous molecule or substance, generically called antigen (Ag), by
antibodies (Ab). The IS first recognizes an antigen as ”dangerous” or external
invaders and then adapts (by affinity maturation) its response to eliminate
the threat. To detect an antigen, the IS activates a recognition process. In
vertebrate organisms, this task is accomplished by the complex machinery
made by cellular interactions and molecular productions. The main features
of the clonal selection theory that will be explored in this chapter are [14]]:

• Proliferation and differentiation on stimulation of cells with antigens;
• Generation of new random genetic changes, subsequently expressed as di-

verse antibody patterns, by a form of accelerated somatic mutation (a
process called affinity maturation);

• Elimination of newly differentiated lymphocytes carrying low affinity anti-
genic receptors.

To illustrate the adaptive immune learning mechanism, consider that an
antigen Ag1 is introduced at time zero and it finds a few specific antibodies
within the animal (see Fig. 1.2). After a lag phase, the antibody against anti-
gen Ag1 appears and its concentration rises up to a certain level, and then
starts to decline (primary response). When another antigen Ag2 is introduced,
no antibody is present, showing the specificity of the antibody response [14].
On the other hand, one important characteristic of the immune memory is
that it is associative: B cells adapted to a certain type of antigen Ag1 presents
a faster and more efficient secondary response not only to Ag1, but also to any
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structurally related antigen Ag1 + Ag2. This phenomenon is called immuno-
logical cross-reaction, or cross-reactive response. This associative memory is
contained in the process of vaccination and is called generalization capabil-

ity, or simply generalization, in other artificial intelligence fields, like neural
networks [14].

Fig. 1.2. Immune response plotted as antibody concentration over time.

Receptor editing offers the ability to escape from local optima on an affinity
landscape. Fig. 1.3 illustrates this idea by considering all possible antigen-
binding sites depicted in the x-axis, with the most similar ones adjacent to each
other. The Ag-Ab affinity is shown on the y-axis. If we consider a particular
antibody (Ab1 ) selected during a primary response, then point mutations
allow the immune system to explore local areas around Ab1 by making small
steps towards an antibody with higher affinity, leading to a local optimum
(Ab1∗). Because mutations with lower affinity are lost, the antibodies can
not go down the hill. Receptor editing allows an antibody to take large steps
through the landscape, landing in a locale where the affinity might be lower
(Ab2 ). However, occasionally the leap will lead to an antibody on the side of
a hill where the climbing region is more promising (Ab3 ), reaching the global
optimum. From this locale, point mutations can drive the antibody to the top
of the hill (Ab3 ∗). In conclusion, point mutations are good for exploring local
regions, while editing may rescue immune responses stuck on unsatisfactory
local optima.

Computational immunology is the research field that attempts to repro-
duce in silico the behavior of the natural IS. From this approach, the new
field of Artificial Immune Systems (AIS) attempts to use theories, principles,
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Fig. 1.3. Antibody affinity as function of the specific antigen binding site.

and concepts of modern immunology to design immunity-based system ap-
plications in science and engineering [14]. AIS are adaptive systems in which
learning takes place using evolutionary mechanisms similar to biological evo-
lution. These different research areas are tied together: the more we learn from
in silico modeling of natural systems, the better we are able to exploit ideas
for computer science and engineering applications.

Thus one wants, first, to understand the dynamics of such complex be-
havior when they face antigenic attack, and second, one wishes to develop
new algorithms that mimic the natural IS under study. Thus the final system
may have a good ability to solve computational problems otherwise difficult
to be solved by conventional specialized algorithms. The computational and
predictive power of AIS offers researchers a promising approach for trying to
solve well known and challenging problems like knowledge discovery from huge
biological databases (e.g. coming from high throughput platforms) as well as
protein folding or function prediction and multiple sequence alignment.

1.2 Type-2 Fuzzy Systems

Type-1 fuzzy sets are characterized by crisp grades of the membership function
however, for some reasons, it could be very hard to find the exact membership
function for a given fuzzy set and, as a consequence, it is hard to determine
an exact membership level for each linguistic variable of the defined universe.
It is then necessary to further fuzzify the knowledge base and this is possi-
ble only by using fuzzy sets that are fuzzy themselves [33]. Type-2 fuzzy sets
are characterized by membership grades that are represented by values in the
interval [0, 1]. At each value of the primary variable the membership is a func-



1 Induction of Fuzzy Rules by Means of Artificial Immune Systems 7

tion (and not just a point value), also called secondary membership function,
whose domain the primary membership, is in the interval [0, 1] and whose
range secondary grades may also be in [0, 1]. We can assume, then, that the
membership function of a Type-2 Fuzzy Set is three dimensional (see Fig. 1.4).
This is a real plus to the theory of Type-1 Fuzzy Sets since it should be evi-
dent that such sets are useful in circumstances where uncertainty prevents us
from obtaining a sufficiently clear knowledge on the process. As an example

Fig. 1.4. Triangular MFs for a T2FS.

we consider the the well known case of eye contact [33]. Let us put the eye
contact on a scale of values that goes from 0 to 10. One can say that a term
of this universe can be ‘some eye contact’. Suppose we interviewed 100 men
and women asking them to set boundaries for this measure on the 0 − −10
scale. It is unlikely we will get the same results from all of them because words
mean different things to different people and this situation is rather frequent
even in specialized field like medicine. One approach to using the 100 sets of
two end-points is to average the end-point data and to use the average values
for the interval associated with some eye contact. We could then construct a
triangular (other shapes could be used) membership function (MF ), MF (x),
whose base end-points (on the x-axis) are at the two average values and whose
apex is midway between the two end-points. This type-1 triangular MF can
be displayed in two-dimensions. Unfortunately, it has completely ignored the
uncertainties associated with the two end-points. A second approach is to
make use of the average values and the standard deviations for the two end-
points. By doing this we are blurring the location of the two endpoints along
the x-axis. Now locate triangles so that their base end-points can be anywhere
in the intervals along the x-axis associated with the blurred average endpoints.
Doing this leads to a continuum of triangular MFs sitting on the x-axis, e.g.
picture a whole bunch of triangles all having the same apex point but different
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base points, as in Fig. 1.4. For purposes of this discussion, suppose there are
exactly 100 (N) such triangles. Then at each value of x, there can be up to N

MF values, MF1(x), MF2(x), · · · , MFN (x). Let us assign a weight to each of
the possible MF values, say wx1, wx2, · · · , wxN (see Fig. 1.4). We can think
of these weights as the possibilities associated with each triangle at this value
of x. At each x, the MF is itself a function -the secondary MF - (MFi(x),
wxi), where i = 1, · · · , N . Consequently, the resulting type-2 MF is three-
dimensional. For more details on T2 Fuzzy Sets the reader is referred to [32]
and [28]. From the description we have provided it should be evident that
uncertainty handling is a key point of these approaches. Uncertainty plays a
major role in bio-medicine and biomedical science since most of the research
carried out in this field is experimental and is affected by measurements as-
sociated errors. This is why we recently proposed a novel approach to data
mining in bioinformatics that tries to face these problems using a coherent
algorithmic model. In the next paragraphs we will describe type-1 and type-2
based fuzzy systems for rule inference from bioinformatic databases. We will
provide a detailed description of both starting from the type-1.

1.3 Fuzzy-Immunity based Data Mining Systems in

Bioinformatics

Recent advances in active fields of research like biotechnology and electronics
allowed biomedical research to make a significant step forward in the acqui-
sition of fundamental tools for the elucidation of complex bio-processes like
the ones behind cancer or Alzheimer disease. The advent of High-Throughput
(HT) platforms has revolutionized the way researchers working in life sci-
ences thought at their role in experiments. HT devices allowed researchers
to concentrate on more important tasks like experimental design and results
interpretation at the same time allowing him to ignore the hundreds when
not thousands of repeats of the same protocols for the different patients or
mRNA sequences for instance. Microarrays are, probably, one of the most ev-
ident examples of this change of perspectives: gene expression evaluation for
a panel of even only a few tens of genes took several days to be completed
before their introduction, now we are able to obtain gene expression level for
thousands of genes in the time of an overnight hybridization. Together with
expression microarrays we can mention copy number monitoring microarrays
(commonly referred to as aCGH technique), High-Throughput Sequencers,
and Mass Spectrometers. In the next sections we will go through a brief anal-
ysis of the main open problems in bioinformatics and will discuss about how
they can be addressed using immunity based data mining algorithms. A short
introduction on data mining principles and potentialities is given in order to
help unexperienced readers understanding concepts behind statements.
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1.3.1 Data Bases and Information Retrieval in Biology

Devices coming from the integration of experiences gained in diverse fields like
physics, chemistry, biology and engineering, in this way helped researchers in
boosting their work and in quickly obtaining results of their experiments. The
capabilities of these different kinds of approach pushed the interest for the
establishment of data repositories for newly generated results. Data-bases en-
tered the world of biology. Larger and larger amounts of data started to fill
public databases (leaving apart literature databases which, of course, need
a separated analysis) giving rise to what we can rename ”Moore’s law in
biology” [46] (that just like the original Moore’s law in electronics, models
future progress in biotechnology [18]). However the main advantages provided
by novel devices soon revealed to be their main weak point. The availability
of large amount of data as results did not yield of information drawn from
these data; this phenomenon characterized both early and more recent years
in life sciences research bringing to the so-called ”gap”. Roughly speaking,
researchers indicate, with this term, an estimate of the difference between
the amount of available data and the amount of these data that have been
sufficiently interpreted [24]. In the recent years we have observed a worrying
widening in this gap: this means that we are making quite large investments
with a ROI (return on investments) that still keeps low. In order to maximize
the information yield of each experiment several alternative solutions have
been proposed being probably data warehousing the most successful. Data
warehouses are the natural evolution of data bases; described for the first time
by William Immon [53]. They are integrated, subject-oriented, time-variant
and non-volatile data collection processes implemented with the precise aim
to build a unique decision support system. The distinction between data bases
and data warehouses is clear: as advanced data bases, data warehouse pro-
vide data analysis functionalities that ease the process of knowledge extrac-
tion from highly dense data repository. In this context significant experiences
like the GEO (Gene Expression for Omnibus [4]), SMD (Stanford Microarray
Database [17]) and ArrayExpress [7] have been gained. It is evident that data
warehouse can greatly help researchers in reducing the gap by providing a
valuable aid in filling the last real hole in experimental processes automation:
results interpretation.

1.3.2 Mining the Data: Converting Data to Knowledge

Data mining, also known as Knowledge Discovery in Data-bases (KDD), has
been defined as ”The nontrivial extraction of implicit, previously unknown,

and potentially useful information from data” [20] (a more practical definition
of data mining will be given in the following section); it uses machine learning,
statistical and visualization techniques to discover and present knowledge in
a form easily comprehensible to humans. Data mining grew at the border
line among statistics, computer science and artificial intelligence and soon
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became a golden tool to solve problems ranging from Customer Relationship
Management (CRM [31]) to Decision Making Support in medicine [47]. Data
mining in bioinformatics, then, can be considered as a useful tool for modeling
complex processes allowing researchers speeding the pace towards treatments
for diseases like cancer: for instance several works have successfully tried to
exploit the potentialities of rule induction systems in breast cancer associated
survival [30, 5] and cancer evolution modeling [35]. It can be argued that data
mining was born from several diverse disciplines, in the effort of overcoming
intrinsic limitations of the single approaches. It is particularly evident if we
compare the expressive power of typical statistical inference approaches and
propositional or first order logic on the other hand. Huge efforts have been
spent, in the recent past, in order to speed up one of the central tasks in
current research in bioinformatics, that is, the transformation process that
converts data in knowledge passing through information [43]. Data mining
software, then, became more and more common: researchers soon realized
the valuable aid algorithms could have given to their researchers and the
amount of paper describing algorithms for information extraction grew faster
and faster [15, 44, 55]. Comprehensive software tools for data mining purposes
are currently largely used in bioinformatics and include both open-source and
proprietary solutions. Among commercial packages we can list SPSS, SAS,
Clementine and E-Miner. Open source tools are well represented by:

• Weka [54]
• Rapid Miner (formerly YALE) [40]
• Orange [39]

In particular Weka has gained a relevant success in the field of data mining
due to its flexibility and versatility. Thanks to these characteristics Weka has
been customized and redistributed in several different flavors (BioWeka [23]
devoted to biological sequences mining and Weka4WS [48], the GRID-enable
Weka implementation). Due to a simple but efficient modular organization
Weka allowed third-party developers to add functionalities to the core package.
It is the case of ”Weka Classification Algorithms” project managed by Jason
Brownlee who has implemented several bio-inspired [8, 9, 29] data mining
algorithm in a customized version of Weka Classification Algorithms 1. One
of the most interesting aspects of this implementation consists in the presence
of a wide variety of Artificial Immune System based data mining algorithms.
Both the black and white box flavors are represented in the set of proposed
algorithms. The distinction between black and white box algorithms will be
described in the following paragraph, however it can be argued that white box
approaches provide the user with tools to easily interpret the way it reached
a certain results, on the contrary to what happens with black box algorithms
(think at how complex is the interpretation of neural network predictions and

1 http://sourceforge.net/projects/wekaclassalgos
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how simple is interpreting rules induced from a dataset). Among black box
Immunity based algorithm we can mention:

Clonalg

The Clonal Selection Algorithm, originally called CSA in [12], and renamed
to CLONALG in [13] is said to be inspired by the following elements of the
clonal selection theory:

• Maintenance of a specific memory set
• Selection and cloning of most stimulated antibodies
• Death of non-stimulated antibodies
• Affinity maturation (mutation)
• Re-selection of clones proportional to affinity with antigen
• Generation and maintenance of diversity

The goal of the algorithm is to develop a memory pool of antibodies that
represents a solution to an engineering problem. In this case, an antibody
represents an element of a solution or a single solution to the problem, and
an antigen represents an element or evaluation of the problem space.

CSCA

The Clonal Selection Classifier Algorithm is an evolution of the concept be-
hind Clonalg since it tries to maximize classification accuracy and minimize
misclassification accuracy still using clonal selection paradigms.

Immunos

The Immunos [10] algorithm has been mentioned a number of times in AIS
literature [49, 25, 50]. It is claimed as being one of the first immune-inspired
classification systems. Immunos tries to mimic in a very precise way the mech-
anisms underlying immune response to antigen attacks and this has led to a
quite complex classification system still under discussion.

AIRS

The Artificial Immune Recognition System [52] algorithm was one of the first
AIS technique designed specifically and applied to classification problems.
After an initialization phase the algorithm cycles through each antigen (record
in the dataset) in order to select best fitting memory cells through a powerful
resource competition stage.

On the other hand white box AIS based paradigms can be found in:

• IFRAIS
• AIS based rule induction with boosting

These approaches will be discussed in greater depth in the next section.
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1.3.3 Algorithmic Approaches to Data-Mining in Biology

As previously stated data mining is an interdisciplinary research field, involv-
ing areas such as machine learning, statistics, databases, expert systems and
data visualization, whose main goal is to extract knowledge (or patterns) from
real-world data sets [19, 54]. This section focuses on the classification (super-
vised learning) task of data mining. In essence, the goal of the classification
task is to assign each example (data instance or record) to a class, out of
a predefined set of classes, based on the values of attributes describing that
example. In the context of bioinformatics an example could be, for instance, a
protein; the classes could be protein functions; and the attributes describing
the protein could be, say, physico-chemical properties of the amino acids com-
posing the protein. It is important that the attributes describing an example
are relevant for predicting its class. Hence, it would be a mistake to use a
clearly irrelevant attribute, say the name of the patient, as an attribute to
predict whether or not a patient will get a certain disease. In bioinformat-
ics, ideally, the classification model should satisfy two requirements. First,
it should have a high predictive accuracy, or generalization ability, correctly
predicting the class of new examples unseen during the training of the sys-
tem. Second, it should be comprehensible to users (biologists), so that it can
be interpreted in the context of existing biological knowledge and potentially
further validated through new biological experiments. Concerning the issue
of comprehensibility of the classification model discovered from the data, it
should be noted that some classification algorithms are designed to maximize
only predictive accuracy, representing the classification model in a way that
cannot be understood by the user - therefore ignoring the comprehensibil-
ity requirement. Typical examples of algorithms in this category are support
vector machines [51] and neural networks [26]. In this case the classification
model is a ”black box”, which does not give the user any insight about the
data or explanations about the classification of new examples. In contrast,
some classification algorithms use a representation which is comprehensible
to the user, therefore returning ”knowledge” to the user. In this section we fo-
cus on one popular kind of comprehensible representation, namely IF-THEN
classification rules, and algorithms that use this kind of representation are
called rule induction algorithms [21]. In rule induction algorithms the classifi-
cation model is represented by a set of classification rules. These rules are of
the form: ”IF antecedent THEN consequent”, where the antecedent represents
a conjunction of conditions and the consequent represents the class predicted
for all examples (data instances, records) that satisfy the antecedent. Each
condition in the antecedent typically specifies a value or a range of values
for a given attribute of the data being mined - e.g., ”gender = female”, ”age
< 21”.

The first AIS for rule induction in the classification task of data mining
was proposed in [3], and named IFRAIS (Induction of Fuzzy Rules with an
Artificial Immune System). IFRAIS as well as IFRAIS2 will be discussed in
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the next section. In this section we just highlight that this system discovers
fuzzy classification rules. Fuzzy rules are in general more natural and more
comprehensible to human beings than crisp rules, and the fuzzy rule repre-
sentation also has the ability of coping well with the uncertainties frequently
associated with data in biological databases [41]. Other algorithms based on
AIS for rule induction are discussed in detail in [1, 11].

Artificial Immune Systems in Bio-medical Data Mining: IFRAIS

and IFRAIS2

As mentioned earlier, IFRAIS as well as its Type-2 FS counterpart are AIS
that designed to discover fuzzy classification rules from data. From now on
we will refer to IFRAIS as the main ideas behind it remained unchanged in
IFRAIS 2 unless otherwise stated.

Recall that the rule antecedent is formed by a conjunction of conditions.
Each attribute can be either continuous (real-valued, e.g. the molecular weight
of a protein) or categorical (nominal, e.g. the name of a species), as usual in
data mining. Categorical attributes are inherently crisp, but continuous at-
tributes are fuzzified by using a set of three linguistic terms (low, medium,
high). Hence, in the case of continuous attributes, IFRAIS discovers fuzzy
rules having conditions such as: ”molecular weight is large”. IFRAIS discov-
ers fuzzy classification rules by using the sequential covering approach for rule
induction algorithms [54]. This is an iterative process which starts with an
empty set of rules and the full training set (containing all training examples).
At each iteration, IFRAIS is run to discover the best possible classification
rule for the current training set, which is then added to the set of discovered
rules. Then the examples correctly covered by the discovered rule (i.e. the
examples satisfying the antecedent of that rule and having the class predicted
by the rule) are removed from the training set, so that a smaller training set
is available for the next iteration. This process is repeated until all (or a large
part of the) training examples have been covered by the discovered rules. In
order to discover classification rules, IFRAIS uses essentially clonal selection
and hypermutation procedures. The basic ideas are as follows. Each antibody
corresponds to a candidate fuzzy classification rule. During an IFRAIS run,
the better the classification accuracy of an antibody, the more likely it is to be
selected for cloning. In addition, once an antibody is cloned, the rate of mu-
tation of a clone is inversely proportional to the classification accuracy of the
antibody. Hence, the principles of clonal selection and hypermutation drive
the evolution of the population of antibody towards better and better classi-
fication rules. In IFRAIS2, on the other hand, we are interested in evolving
terms with MF that are fuzzy themselves so we handle them using a pre-
defined number of MF for each term and we evolve vectors of these features
in place of single attributes (e.g. vectors of mean values or cut-values of MF in
place of a single mean or cut-value). In [34, 38] IFRAIS was successfully em-
ployed to discover fuzzy classification rules for female breast cancer familiarity
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Dataset IFRAIS2 IFRAIS

CRX 74.82% 69.65%
Monk 91.08% 87.26%
Wine 85.12% 83.26%

Breast Cancer aCGH [38] 87.86% 78.65%
Breast Cancer Gene Expression [34] 87.45% 82.73%

Table 1.1. Results of IFRAIS and IFRAIS 2 on several data sets of varying com-
plexity.

profiling. IFRAIS’ results were validated using statistical driven approaches
using Gene Ontology through GO Miner [55]. Competitive results obtained
by IFRAIS and IFRAIS 2 (Tab. 1.1 show a comparative study of the results
of both IFRAIS and IFRAIS 2 on benchmark, as well as, on real world data
sets) seem to encourage new efforts in this field. A biological interpretation of
the results carried out using Gene Ontology is currently under investigation.

1.3.4 Application of AIS based Data Mining in Bioinformatics

As we previously stated several examples of application of Fuzzy-AIS based
data mining systems in bioinformatics can be retrieved in literature. Fuzzy
and Artificial Immune Systems-derived algorithms have been employed in fa-
miliarity profiling [34], prognosis prediction [35] and estrogen receptor model-
ing [36] in breast cancer. For a brief comparative overview of the performances
of these kinds of systems in the context of aCGH data analysis the reader is
referred to [37]. For the AIS counterpart we should note that previously de
Castro and colleagues focused on the use of Hierarchical Artificial Immune
Network paradigm for the problem of gene expression clustering [6, 27] and
for rearrangement study of gene expression [16]. Research currently being
carried out by Alves and colleagues is mainly focused on the application of
a multi-label Fuzzy-AIS based data mining system to the problem of protein
function prediction [2].

1.4 Conclusions and Open Questions

In this chapter we have analyzed some applications of Fuzzy-Artificial Immune
System based algorithms in bioinformatics. Of course this is only a partial out-
look on the world of Fuzzy-AIS based approaches: interested readers can check
references in order to obtain more detailed information about specific aspects
of the proposed topics. Furthermore, given their infancy, Fuzzy-AIS are cur-
rently undergoing very fast changes resulting in a very dynamical field of
research where tens of novel and promising projects are proposed in the time
of some months. These aspects forced the authors to select a set of significant
experiences to be used as examples of how the algorithms described herein
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can be successfully used in the field of bioinformatics. After these necessary
statements some conclusions. In this chapter we have learned how novel bio-
inspired computational intelligence paradigms can be used in very diverse field
of research in bioinformatics. As previously stated Fuzzy-AIS are considered
a novel paradigm but they have been already able to reach significant results
in highly complex context like Knowledge Discovery in Data bases and Gene
signature Prediction. Even if fuzzy-immune-inspired algorithms have been suc-
cessfully employed in several diverse problems, there are still some strategic
fields of research in which solutions seem to be far from being reached, just
to name few:

• Gene networks inference;
• Disease profiling and evolution modeling.
• Diagnostic and prognostic disease signature development

These are only some of the most active areas of Fuzzy-AIS based research
in bioinformatics. From a theoretical point of view it should be noted that
some areas like hybrid systems in this field have been exploited with a limited
systematic approach in bioinformatics: these areas deserve a comprehensive
analytic approach. Readers interested in these promising aspects of the Fuzzy-
AIS research in bioinformatics can find useful information in [42, 45].
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